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Multiple scattering in light scattering spectroscopy 

H C Kelly 
US Arms Control and Disarmament Agency, Washington, DC 20451, USA 

MS received 20 June 1972, in revised form 16 October 1972 

Abstract. When light with a well defined frequency is scattered from a large number of 
small, independently fluctuating scattering centres, the resulting spectrum is ‘doppler 
broadened’. This paper will examine the influence of multiple scattering processes on this 
broadening by using a classical expansion. The results indicate that, to second order in an 
expansion parameter (which is a function of the density of scatters and their polarizability), 
the spectrum of the scattered light is the same as that computed by using the single-scattering 
approximation. The effect of multiple scattering on the polarization, angular dependence, 
and statistics of the scattered light will also be discussed. 

1. Light scattering spectroscopy 

Light scattering has been used for a number of years as an elegant tool for probing the 
time dependent properties of fluctuating systems (Pecora 1964, Fabelinski 1957, Benedek 
1968). Figure 1 illustrates the geometry of a typical experiment. Incident light, charac- 
terized by a well defined frequency oo , enters the sample volume VI in the direction of the 
wavevector ko. The primary beam illuminates the volume V, and the scattered light is 
observed through two pinholes which define the scattered light direction k’. The 
spectrum of the scattered light will contain information about the fluctuations in the 
scattering region. 

Figure 1. 
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In most calculations of the scattered spectrum it is assumed that the density of the 
scattering centres is so low that the light interacts with only a single scattering centre 
before it is observed. This assumption breaks down, however, in many applications of 
experimental interest such as scattering from materials which are near a critical point 
and biological samples whose concentrations approach those in vivo. In such samples 
the light may be scattered from a number of scattering centres before reaching the 
observer. These multiple scattering processes can often be seen in experiments involving 
visible light. The higher order scattering terms appear as a light glow surrounding the 
volume of primary illumination, V, . 

The remainder of this discussion will be devoted to a classical calculation which will 
indicate how multiple scattering influences the spectrum, angular properties. polariza- 
tion, and statistics of the scattered light. 

2. The scattering formalism 

The fluctuations of the scattering medium are coupled to the spectrum of the scattered 
light when they produce changes in the polarizability tensor of the medium a@, t) .  
The equations governing an electric field passing through a region characterized by a 
medium of varying polarizability are as follows (Born and Wolf 1964, Komarov and 
Fisher 1963) : 

E(r, t )  = V x V x Z(r, t )  + E,(v, t )  

(Vz + k2)Z(r, t )  = - 4na(r, t )  . ~ ( r ,  t).  

Here E,(r, t )  represents the incident electric field in the absence of the scattering medium 
and k = Jkl. Equation (1) assumes that the fluctuation frequencies in a are small com- 
pared with the frequency of the incident light. The function Z(r, t )  is often called the 
‘Hertz vector’. 

Exact solutions to (1) are difficult to  achieve in complex materials (Chandrasekhar 
1960, Plass and Kattawar 1968). We will, however, be able to compute an iterative 
solution in which E(r, t )  will be written as the sum of a series of terms. The nth term in 
this series will represent the contribution of light scattered n times in the medium before 
it reaches the detector. 

We will solve (1) by making use of the Green function g ( r l , r 2 )  which satisfies the 
following equation : 

( V z + k z ) g ( r l , r 2 )  = --4nd(r1 - r z )  ( 2 )  

with the solution 

&I ,  y2 1 = exp(ikIr1 - r2 I)llr1 - r2 1 .  (3) 

I t  can then be shown that (1) is solved by 
V l  

~ ( r , ,  t )  = ~ , , ( r , ,  t )  + 1 v x v x (g(rl, r2k( r2 ,  t )  . ~ ~ ( r ~ ,  t ) )  d3rz. (4) 

The integral in (4) is taken over the entire scattering volume V, except for the small 
volume element a@,) centred on the point rl . It is assumed that the dimensions of o 
are small compared with the wavelength of the incident light. 

a h )  



Multiple scattering in light scattering spectroscopy 355 

We will now assume that the incident electric field can be written as 

Eo@, t )  = MO{ i(k . r - mot)}  ( 5 )  

and that the polarizability tensor a(r, t )  is isotropic and has diagonal elements all equal to 
a(r, t). The form V x (V x go) will appear frequently in subsequent calculations and the 
following identity will be useful : 

v X(Vxg(r1$r2)e^) = k2fa(lrl-Y21)&-(e*.A12)fb(lrl-r21)Al,  (6)  

f,(r) 1 + i/kr - ( l/kr), 17) 

fb(r) = 1 + 3i/kr - 3( l/kr), (8) 

where we have used the quantity A, ,  = ( r ,  -r2)/Ir1 - r 2 / .  
Using equations (5H8) in (4) we find (for a point R outside the scattering volume) 

where the tensor T(r, , r , )  is defined as follows : 

where A12(i)  represents the ith Cartesian component of the unit vector t i , , .  
The iterative solution can now easily be written in powers of T 

m 
E(R, t )  = Eo(R, t )  + C En(R, t) 

n =  1 

n - 1  Y1 
En(R, t )  = 6?ok2n e-imot 

Here V, is the part of V, visible to the detector. 

tributions from light which has been successively scattered at n points. 

d3r,T(R, r ,) .  d3rm+ ,T(rmr r,+ 1)] . C eikxn. (12) s,, m =  1 (ln(r,,,) 

There is a simple physical interpretation to the terms in (1 1). En represents the con- 

3. Evaluation of the iterative terms 

The first term in equation (1 1) is the conventional Born approximation : 

A x (a  x A) 
E,(& t )  = €ok2 d3r1a(r1, t )  exp{i(k - k ' ) .  rl}.  

The Born approximation is good when the intensity of the scattered light is only a small 
fraction of the intensity of the incident light, that is, when 

sp2 E 4nR21E(R, t) - Eo(R, t)12/A&'i << 1 (14) 

where A represents the area of the incident beam. 
We can obtain an estimate of the magnitude of sp by using the Born approximation 

cp2 N (4nk4 sin2t,h/A) d3ra(r) exp{i(k-k') . 
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where ro is the polarizability of an individual scattering centre and V, is the average 
volume of a scattering centre. 

When v, is not small, the higher order terms in ( 1  1) must be calculated. These terms 
are smaller than E, roughly as powers of the expansion parameter E where cis defined by 

I t  can be seen that 

E 5 k2Xor.,pV4/R0 E,/R, (18)  

R, = (I,TJJ,~ ( 1 + 1 3 ~  

where we have defined 

6, k2r,r.,pV4 

We will now examine the behaviour of the first correction to E ,  in some detail. 
Returning to equation (12) we find 

= (8,;R) exp(ikR - h o t )  J,, d3r1 exp(ik. rz - ik' . vl)g(vl. v,) 
0 1 )  

x F(lvi - r 2 1 ) 4 ~ 1 ) r ( ~ 2 )  d3r2 (20) 

F(v) = .fa(lrl)fi x (2 x i r )  - (2. P),fb(lvl)fi x (v x ir)/lr12. (71) 

The component of E2(R) which is polarized in a direction parallel to El(R) can be 

where we have defined 

calculated by replacing Fin  equation (20) with F , ,  where 

Fl l ( lvl-v21)  = .fa(lvl-v21)sin 3 - , f ~ ~ ~ v , - ~ ~ / ) ~ 0 s t ) ~ ~ j ~ 0 ~ ~ ~ , ,  sin cc/-cos @sintl,, 

x coS(4-41,); (22) 

where we have used @ cos- ' (6 .  f i12) .  The term 412 represents 
the angle between k'and the projection of i r l z  on the plane perpendicular to 2 (see figure 
2). 4 is the angle between k ,  and the projection of fi  on this plane. 

The component of E,(R) which is polarized in a direction normal to E,(R)  can be 
computed by replacing F i n  equation (20) with Fl where 

(23) 

cos- ' ( a .  f i ) ,  and HI, 

FL = fb(lY1 -v21)cos 012  sin Q 1 2  sin(@ -412).  

4. The correlation functions 

We are finally in a position where we can compute the spectral characteristics of the 
scattered light. To simplify the following calculations. we will assume that V, = V3 = V4 
(the generalization to non-equal volumes will be obvious) and we will assume that the 
polarizability tensor is characterized by N discrete scattering centres all of volume r ,  
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f 

Figure 2. 

where the dimensions of vo  are small compared with the wavelength of the incident light. 
We can then write 

N 
a(r, t )  = 1 aou0 6(r-ri(t)). 

i =  1 

We will assume that each scattering centre is independent of all the others. If  the point 
of observation R is not in the path of the incident light, we will be able to write 

We will begin our calculation by computing the correlation function of the scattered 
light. The spectra can be determined by Fourier transforming these correlations but in 
several recent experiments (Jakeman et al 1968, Foord et  al 1970), it has proved easiest 
to measure the correlation function directly. 

Two correlation functions will be computed : the field correlation (Mandel and Wolf 
1965) 

&(R, t )  = 0. 

r 1 ( ~ ,  T )  = (E*(R, t )  . E(R, t + T I > ,  (25 )  

and the intensity correlation 

r2(R, 7) (E*(R, t )  . E*(R, t + T ) E ( R ,  t )  . E(R, t + 5)). (26) 

Using equations (1 1) and (12) we find 

r r ( R ,  7) = (ET(R, t)E,(R, t + 7)) + (ET(R t)E,(R, t + 7)) 

+ (ET(R,  t)E,(R, t + 7)) +(terms of higher order in E). 

Trl(R,  T )  = (ET@, t )E,(R,  t + z ) )  = (&Jc2 sin tj/R)’C(r) (28) 

C(z) = N(exp{i(k-k’). ( r i ( t ) - r i ( t+7) } ) .  (29) 

(27) 

The first term in (27) is the conventional single scatter correlation function : 

where 

C/N is assumed to be the same for all the scattering centres and it is assumed that the 
fluctuations are stationary. 
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The next term in (28) is given by 

(ET(R,  t )E2(R,  t + T ) )  = (N~00k3/R)2( .ovo)3B(k,  k’)C(z) (30) 
where 

N 

P(kk ’ )  = (1/N) 1 g(rm-rn)F( l rm-rnl ) [exp{ ik ’ .  ( r m - r n ) )  +exp{ik. ( r m - r n ) } ] .  (31) 

If we assume that the spectrum of the scattered light is symmetric about the central 
frequency coo, we can write C(T)  = C*( - 7 ) .  We then find that to first order in E the time 
dependence of rl and r l  is identical : 

(32) 
The first term in the correlation function of the light polarized in a direction perpen- 

n # m  

T1(R, T )  = (&oco/R)2{ sin2$ + e 0  sin $ Re(P(k, k’) ) }C(z) .  

dicular to the polarization of E ,  will be given by 
h 8\ 

r: = ( ‘ o ’ 2 ~ o u o / R ) 2 ( ~ 3 N )  1 g(Irp(t)-rv,(t)I)g(Irm(t + T)-rn(t + z)I) 
m + n  p + q  

x ~~( lrp(t ) -r~( t ) l )F~( lrm(t  + 7) - r n ( l +  t)I) 

x exp{ik. ( r p ( t ) - r q ( t ) )  expfik’ . ( r , ( t + r ) - r n ( t + s ) ) ) .  (33) 
It is clear from (33) that the correlation function of light scattered with a polarization 
perpendicular to that of E ,  has a spectrum which is substantially different from that of 
E , .  All of these terms are, however, second order in the expansion parameter. 

It can also be shown that if the scattering centres are so large that (24) is no longer 
a valid approximation, the spectrum of rl is distorted even to first order in the expansion 
parameter. 

We can now turn to a calculation of the intensity correlation function r2. Proceeding 
as before, we can show that 

r2(R, z) = ( N 8 0 k 2 ~ 0 u 0 / R ) 4  sin3$(sin $ +4c0 Re(P(k, k’))( l  + IC(7)12) 

+ (terms of order e:). ( 34) 

Thus to first order in the expansion parameter, the time dependence of r2 is the same 
as that of the intensity correlation function calculated to zeroth order in E 

r2, = (N80k2a0u0/R)4(1 + Ic(z)12). (35) 

5. Angular dependence 

The angular dependence of the double scattering process is contained in the function 
j (k ,k‘ ) .  In calculating the properties of P it will be convenient to use a function P(v) 
which is defined to be the probability that any two points, selected at random in the 
volume V ,  will be separated by the distance r .  We find that 

P(r) = ( l /V)2  / / S(r-r,+r,)exp(ik. r)d3rl  d3r2 = ( l / 2 ~ ) ~  jd3kjf(k)12 
v v  

where 

f ( k )  ( l /V)  eik.* d3r. 
V 

(37) 
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Using (33) in equation (31), we find 

b(k, k') = (l/N) J (P(r) - l/V)g(r)F(lrl)(eik"+ ei"'.') d3r. 

A(q) Jeiq'g(r)(P(r)- l / V ) { f o ( r ) - ( k .  r/kr)2fb(r)} d3r 

(38) 
V 

Equivalently, we can write 

b(k, k') = (A@) + A(k')) sin $ + (B(k) + B(k')) sin $ cos 4 + (C(k) + C(k')) cos I) sin 4 
where 

(39) 

(40) 

If V is a sphere, P(r) will be independent of angle and we find that the only real part of p 
will be given by 

Re@ = 811 sin $ (P(r )  - l/V)g(r)(sin(kr)/kr+ Jo(kr)/3)r2 dr (42) J: 
where a is the radius of the sphere, and J, is the Bessel function of zeroth order. Thus 
in this case p is proportional only to sin $ and is independent of #. The angular depen- 
dence of the field and intensity correlation functions will thus be the same to first and 
second order. 

It can also be seen from (23) that the correlation function of the fields polarized 
perpendicular to E ,  are, to lowest order in c, independent of 6. 

6. The statistics of the higher order terms 

The higher order scattering terms are not strictly gaussian random processes. We shall 
be able to show, however, that the departures from gaussian statistics are small except 
for terms involving a very large number of scattering processes. 

The central limit theorem can be used to show that the term E ,  is gaussian because 
it can be decomposed into a sum of terms which depend only on individual scattering 
centres and which are therefore statistically independent (Rice 1944, 1945) : 

The higher order terms can be expanded in a form similar to (43) 
N 

EAR) = EnO') (45) 

En(i) = T(R, T(r[i(m- r[i(m)I) T(r[i(n- 111, r[i(n)I)E(r[i(n)I)* (46) 

j =  1 

The prime on the sums indicates that no two indices i(m) and i(n) may be equal. 
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Using (45) and (46) it can be shown that if i # j 

This result does not depend on the particular choice of decomposition shown in (46). 
We have thus shown that the fields which are obtained by n fold scattering processes 
depart from gaussian statistics by terms of order (n  - l ) ! / N .  It is clear, however, that n 
must be quite large before this effect has any experimental significance. 

7. Conclusions 

In the calculations of this paper we have assumed that primary light, having a well 
defined initial frequency oo = kc, is incident on a sample of volume I/ which contains 
N independent scattering centres each of which has a volume U ,  (whose dimensions are 
small compared with 2 4 k )  and an isotropic polarizability U,. 

We have seen that the amplitudes of the scattered fields which are the result of n 
scattering processes, differ from that of the single scattered field by roughly 
( ~ u , u , N / V R , ) ~ ,  where R ,  is the average distance between points in V .  (R ,  is roughly 
proportional to the average linear dimension of V . )  The multiple scattering processes 
d o  not strictly obey gaussian statistics, their angular dependence can be different from 
that of simple Rayleigh scattering, and they can contain polarizations different from that 
of the single scattered fields. The higher order terms can have spectra different from that 
of the single scattering case. 

Most significantly, however, we have seen that the spectra of the fields and the power 
spectra of the intensities of the fields containing double scattered light are the same as 
those of the single scattered fields and intensities. Changes in the spectrum of the scattered 
light will thus be smaller than the single scatter approximation by at  least (kcc,~,N/R, V)’. 
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